Описание курса «Линейная алгебра и геометрия. Часть 1. Алгебра матриц»
В данном курсе рассматриваются основные концепты и методы линейной алгебры и геометрии как инструменты решения реальных кейсов в области компьютерной обработки данных и машинного обучения. Курс содержит лекционный материал, тестовый материал для проверки знаний и практикум для раздела Матричная Алгебра. Примеры реализации и демонстрации алгоритмов выполнены на Python-3 и в MathCad.
Тема 1.1. Введение в курс. Алгебра матриц. Свойства операций. Виды матриц.
Тема 1.2. СЛАУ. Матричная интерпретация СЛАУ. Ах=b. Пространство строк/столбцов. Элементарные преобразования (ЭП). Матрицы ЭП.
Тема 1.3. Решение СЛАУ методом исключения переменных и методом Гаусса. LU - факторизация матрицы. Построение обратной матрицы
Тема 1.4. Линейная зависимость строк/столбцов матрицы. Ранг матрицы. Приведение матрицы к ступенчатому виду. Вычисление ранга. Критерий существования и единственности решения СЛАУ. Теорема Кронеккера-Капелли.
Тема 1.5. Решение однородного уравнения. Нуль-пространство матрицы. Базис нуль-пространства (фундаментальные решения). Общее решение СЛАУ.
Тема 1.6. Перестановки. Определитель квадратной матрицы. Свойства определителя. Вычисление определителя с помощью ЭП. Разложение определителя по строке/столбцу. Миноры и алгебраические дополнения. Формула Крамера.
Школьный курс математики.
Обучающиеся, успешно завершившие данный курс, будут:
способны использовать матричный анализ и векторную алгебру для описания и представления реальных данных
способны моделировать векторные графические объекты и описывать их динамику;
готовы к освоению методов анализа больших объемов данных (поиск зависимостей, регрессионный анализ, снижение размерности, проецирование, кластеризация, построение рекомендательных систем), представленные в виде объектно-признаковых матриц;
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (cпособность использовать матричный анализ и векторную алгебру для описания и представления реальных данных; способность моделировать графические объекты и описывать их динамику; готовность анализировать большие объемы данных, представленные в виде объектно-признаковых матриц (поиск зависимостей, регрессионный анализ, снижение размерности, проецирование, кластеризация, построение рекомендательных систем))
09.03.01 Информатика и вычислительная техника
09.03.02 Информационные системы и технологии
09.03.03 Прикладная информатика
09.03.04 Программная инженерия